Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth mode transition and relaxation of thin InGaN layers on GaN (0001)

Identifieur interne : 000C37 ( Main/Repository ); précédent : 000C36; suivant : 000C38

Growth mode transition and relaxation of thin InGaN layers on GaN (0001)

Auteurs : RBID : Pascal:13-0197436

Descripteurs français

English descriptors

Abstract

We have investigated on the growth of InGaN layers and quantum dots (QDs) on GaN (0001) by metal-organic vapour phase epitaxy. For indium contents above 15% strained QDs form after a certain layer thickness (Stranski Krastanov mode) with typical heights of 2-3 nm. The QD density increases fast during further deposition until saturation above 1010 cm-2. Growing thicker layers results in larger but relaxed structures and leave only a small growth window for strained QDs. The data indicate that QDs form when the accumulated strain energy calculated from indium content and layer thickness exceeds a critical value which is independent from the indium content. The same behaviour was found for the critical thickness of relaxation, indicating that relaxation occurs via the relaxation of large QDs with heights above 3 nm.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0197436

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth mode transition and relaxation of thin InGaN layers on GaN (0001)</title>
<author>
<name sortKey="Pristovsek, Markus" uniqKey="Pristovsek M">Markus Pristovsek</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Berlin, EW 6-1, Institut für Festkörperphysik, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kadir, Abdul" uniqKey="Kadir A">Abdul Kadir</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Berlin, EW 6-1, Institut für Festkörperphysik, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meissner, Christian" uniqKey="Meissner C">Christian Meissner</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Berlin, EW 6-1, Institut für Festkörperphysik, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schwaner, Tilman" uniqKey="Schwaner T">Tilman Schwaner</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Berlin, EW 6-1, Institut für Festkörperphysik, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leyer, Martin" uniqKey="Leyer M">Martin Leyer</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Berlin, EW 6-1, Institut für Festkörperphysik, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stellmach, Joachim" uniqKey="Stellmach J">Joachim Stellmach</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Berlin, EW 6-1, Institut für Festkörperphysik, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kneissl, Michael" uniqKey="Kneissl M">Michael Kneissl</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Berlin, EW 6-1, Institut für Festkörperphysik, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ivaldi, Francesco" uniqKey="Ivaldi F">Francesco Ivaldi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Polish Academy of Sciences, Institute of Physics, al. Lotników 32/46</s1>
<s2>02-668 Warsaw</s2>
<s3>POL</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>02-668 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kret, S Awomir" uniqKey="Kret S">S Awomir Kret</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Polish Academy of Sciences, Institute of Physics, al. Lotników 32/46</s1>
<s2>02-668 Warsaw</s2>
<s3>POL</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>02-668 Warsaw</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0197436</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0197436 INIST</idno>
<idno type="RBID">Pascal:13-0197436</idno>
<idno type="wicri:Area/Main/Corpus">000D03</idno>
<idno type="wicri:Area/Main/Repository">000C37</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Critical value</term>
<term>Epitaxy</term>
<term>Gallium nitride</term>
<term>Growth mechanism</term>
<term>III-V semiconductors</term>
<term>Indium</term>
<term>Indium nitride</term>
<term>Layer thickness</term>
<term>MOVPE method</term>
<term>Mechanical properties</term>
<term>Nanostructured materials</term>
<term>Organometallic compounds</term>
<term>Quantum dots</term>
<term>Relaxation</term>
<term>Strain energy</term>
<term>Stranski-Krastanov growth method</term>
<term>Stress effects</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mécanisme croissance</term>
<term>Relaxation</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Méthode MOVPE</term>
<term>Indium</term>
<term>Epaisseur couche</term>
<term>Méthode croissance Stranski-Krastanov</term>
<term>Propriété mécanique</term>
<term>Energie déformation</term>
<term>Valeur critique</term>
<term>Effet contrainte</term>
<term>Composé organométallique</term>
<term>Epitaxie</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Semiconducteur III-V</term>
<term>InGaN</term>
<term>Substrat GaN</term>
<term>In</term>
<term>8110A</term>
<term>8107T</term>
<term>8107</term>
<term>8115K</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have investigated on the growth of InGaN layers and quantum dots (QDs) on GaN (0001) by metal-organic vapour phase epitaxy. For indium contents above 15% strained QDs form after a certain layer thickness (Stranski Krastanov mode) with typical heights of 2-3 nm. The QD density increases fast during further deposition until saturation above 10
<sup>10</sup>
cm
<sup>-2</sup>
. Growing thicker layers results in larger but relaxed structures and leave only a small growth window for strained QDs. The data indicate that QDs form when the accumulated strain energy calculated from indium content and layer thickness exceeds a critical value which is independent from the indium content. The same behaviour was found for the critical thickness of relaxation, indicating that relaxation occurs via the relaxation of large QDs with heights above 3 nm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>372</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth mode transition and relaxation of thin InGaN layers on GaN (0001)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PRISTOVSEK (Markus)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KADIR (Abdul)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MEISSNER (Christian)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHWANER (Tilman)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEYER (Martin)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>STELLMACH (Joachim)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KNEISSL (Michael)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>IVALDI (Francesco)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KRET (Sławomir)</s1>
</fA11>
<fA14 i1="01">
<s1>Technische Universität Berlin, EW 6-1, Institut für Festkörperphysik, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Polish Academy of Sciences, Institute of Physics, al. Lotników 32/46</s1>
<s2>02-668 Warsaw</s2>
<s3>POL</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>65-72</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000504165110100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>44 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0197436</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have investigated on the growth of InGaN layers and quantum dots (QDs) on GaN (0001) by metal-organic vapour phase epitaxy. For indium contents above 15% strained QDs form after a certain layer thickness (Stranski Krastanov mode) with typical heights of 2-3 nm. The QD density increases fast during further deposition until saturation above 10
<sup>10</sup>
cm
<sup>-2</sup>
. Growing thicker layers results in larger but relaxed structures and leave only a small growth window for strained QDs. The data indicate that QDs form when the accumulated strain energy calculated from indium content and layer thickness exceeds a critical value which is independent from the indium content. The same behaviour was found for the critical thickness of relaxation, indicating that relaxation occurs via the relaxation of large QDs with heights above 3 nm.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Relaxation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Relaxation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode croissance Stranski-Krastanov</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Stranski-Krastanov growth method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Método crecimiento Stranski-Krastanov</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Propriété mécanique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Mechanical properties</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Energie déformation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Strain energy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Energía deformación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Valeur critique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Critical value</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Valor crítico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé organométallique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Organometallic compounds</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Epitaxie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Epitaxy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Substrat GaN</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8115K</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>182</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0197436
   |texte=   Growth mode transition and relaxation of thin InGaN layers on GaN (0001)
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024